F(x)=8x^2+4x

Simple and best practice solution for F(x)=8x^2+4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=8x^2+4x equation:



(F)=8F^2+4F
We move all terms to the left:
(F)-(8F^2+4F)=0
We get rid of parentheses
-8F^2+F-4F=0
We add all the numbers together, and all the variables
-8F^2-3F=0
a = -8; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-8)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-8}=\frac{0}{-16} =0 $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-8}=\frac{6}{-16} =-3/8 $

See similar equations:

| 11(x-2)=3(x-1) | | (3x+20)°+60°= | | 11-3x=83 | | 3x+5+5x-9=90 | | 11-7x=1-8x | | a/6+7=14 | | t-8=22 | | 8(5x-4)-15x=5(2+5x)-21 | | 5x^2-3x+8=12 | | 90=(2x+2)+(x+1) | | (2+3)·0.1=t | | 3x+(x+2)=2 | | 10/n-9=2/7 | | -4-10r=-104 | | 4+4(4u-1)=-2(2u-6)+6u | | 4x-2+2(3x+3)=-5(x+1) | | 4x-23+5+5x=180 | | 4(g-1)^2+6=13 | | 4x-23+5+5x=90 | | 7x-35=2x-5, | | y=-2(-0.5+2)(-0.5-1) | | 4x-23=5+5x=90 | | 5(u+6)=-2(8u-9)+3u | | 4+8y=10y | | 4x-23=5+5x | | X(x+3)+3=5x+6 | | 14(a+6)=36 | | 7y-24=-15+7y | | -6+8t+18+2t=6(t+1)+5 | | 3w−9=-6w | | -8p+3=-7p | | 2x^2​−2x−180=0 |

Equations solver categories